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Recent advancements in computational methods for protein-

structure prediction have made it possible to generate the

high-quality de novo models required for ab initio phasing of

crystallographic diffraction data using molecular replacement.

Despite those encouraging achievements in ab initio phasing

using de novo models, its success is limited only to those

targets for which high-quality de novo models can be

generated. In order to increase the scope of targets to which

ab initio phasing with de novo models can be successfully

applied, it is necessary to reduce the errors in the de novo

models that are used as templates for molecular replacement.

Here, an approach is introduced that can identify and rebuild

the residues with larger errors, which subsequently reduces the

overall C� root-mean-square deviation (CA-RMSD) from the

native protein structure. The error in a predicted model is

estimated from the average pairwise geometric distance per

residue computed among selected lowest energy coarse-

grained models. This score is subsequently employed to guide

a rebuilding process that focuses on more error-prone residues

in the coarse-grained models. This rebuilding methodology

has been tested on ten protein targets that were unsuccessful

using previous methods. The average CA-RMSD of the

coarse-grained models was improved from 4.93 to 4.06 Å. For

those models with CA-RMSD less than 3.0 Å, the average

CA-RMSD was improved from 3.38 to 2.60 Å. These rebuilt

coarse-grained models were then converted into all-atom

models and refined to produce improved de novo models for

molecular replacement. Seven diffraction data sets were

successfully phased using rebuilt de novo models, indicating

the improved quality of these rebuilt de novo models and

the effectiveness of the rebuilding process. Software imple-

menting this method, called MORPHEUS, can be down-

loaded from http://www.riken.jp/zhangiru/software.html.
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1. Introduction

X-ray crystallography is the principal method for the structure

determination of macromolecules, including proteins, to

atomic detail. Adequate phases derived from diffraction data

using experimental methods are sufficient to solve the struc-

tures of even the largest macromolecules, such as eukaryotic

ribosome, at atomic resolution (Ben-Shem et al., 2011). In the

absence of experimental phases, protein structures can be

solved by computational methods such as molecular replace-

ment (MR; Blow & Rossmann, 1961). MR generally requires
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template models derived from the structures of homologous

proteins.

Recent improvements in computational methods for the

prediction of protein structures using only amino-acid

sequences, known as de novo modelling, have opened a new

frontier in structural determination. One of the practical

applications of de novo modelling has been shown to be the

solution of the crystallographic phase problem for new folds

(Qian et al., 2007), which can be considered as ab initio

phasing. Computationally generated models of small proteins

have extended the utility of MR in the absence of known

starting homologous structures. A successful de novo model-

ling methodology was inspired by the fragment-assembly

approach, in which fragments of known structures are

combined with the guidance of scoring functions, which consist

of all of the major energy terms for protein stability (Bowie &

Eisenberg, 1994; Das & Baker, 2008). One of the most

successful fragment-assembly methods for protein-structure

prediction is Rosetta (Rohl et al., 2004), which has been

demonstrated to be able to predict the high-quality models

necessary for solving the phase problem by MR (Das & Baker,

2009). Rosetta’s methodology in the initial stage is to use a

coarse-grained model that contains only the main chain and

the centroids of side chains in order to search a wider

conformational space. In the second stage, it refines the all-

atom models derived from coarse-grained models with limited

main-chain conformational searches and full side-chain

packing and optimization (Das & Baker, 2008). Owing to this

two-stage process, the success of all-atom refinement depends

highly on the quality of the coarse-grained models generated.

To be successfully used as a template for MR, a predicted

model must have the correct fold as present in the target

structure. Moreover, a significant portion of the atomic scat-

terers should spatially match those of the underlying target

structure. Much effort has been made to increase the success

rate of ab initio phasing with de novo models. The MR method

has generally been executed on models filtered by energy after

predicting a large number of models (Das & Baker, 2009).

At the other extreme, coarse-grained models or polyalanine

models have also been used for MR (Rigden et al., 2008; Das

& Baker, 2009). However, the absence of a large portion of

the atomic detail appears to be a bottleneck to achieving

successful solutions. The number of successful cases in MR

trials was significantly increased with models optimized using

Rosetta all-atom energy (Das & Baker, 2009). Other approa-

ches for increasing the success rate were to spend a large

amount of computing power on conformational sampling (Das

& Baker, 2009) and to trim the highly flexible loop regions in

the predicted models (Rigden et al., 2008). In addition, phasing

with intermediate all-atom models during optimization effec-

tively managed the computational time as well as slightly

increasing the success rate of MR experiments (Shrestha et al.,

2011).

Many factors associated with diffraction data such as reso-

lution, solvent content, noncrystallographic symmetry in the

unit cell and others could have significant impact on obtaining

successful MR solutions. However, poor correlations have

been observed between these factors and the MR success rate

using de novo models (Das & Baker, 2009; Shrestha et al.,

2011). In contrast, improved model quality enabled success

in all tested cases (Das & Baker, 2009; Shrestha et al., 2011).

Therefore, it is critical to predict highly accurate de novo

models so that they can be used as templates for successful

ab initio phasing by MR. There are several areas in which

improvements may result in better de novo models, such as

the improved identification of high-quality fragments, more

accurate energy functions and more efficient sampling of

conformational space. Recent efforts to improve de novo

model quality have primarily been focused on conformational

sampling (Kim et al., 2009).

The errors in a template model are not uniformly distrib-

uted. Removing regions with large errors can produce a

template that is closer to the target and increase the chances

of success in MR provided that the remaining structure still

constitutes a significantly large portion of the scattering matter

with respect to the target. Traditionally, many approaches

have been employed to increase the success rate of MR from a

given template, which is typically from a structural homologue.

These include trimming off loops or terminal regions to create

a compact core structure, removing side chains to generate a

polyalanine model, deleting highly flexible regions identified

by high temperature factors in the coordinates and pruning off

the side chains of residues that are nonconserved between

the template sequence and the target sequence (Stein, 2008).

Searching multiple domains or multiple templates simulta-

neously can also be very powerful in solving difficult cases of

MR (McCoy et al., 2007). To take advantage of the ever-

increasing number of structures that are being deposited in the

Protein Data Bank (Berman et al., 2000), automated pipelines

have been created in order to relieve users of the burden of

the manual curation of templates for MR, resulting in an

increased success rate (Keegan & Winn, 2008; Long et al.,

2008). In this paper, the focus is on improving the entire

template model for MR.

One way to improve the quality of de novo models is to

identify loop regions and then focus the conformational

sampling on these regions (Canutescu & Dunbrack, 2003;

Mandell et al., 2009). The loop region is first identified from

the secondary-structure assignment of the predicted models

(Kabsch & Sander, 1983). Extensive resampling of these loop

regions is then carried out by the cyclic coordinate-descent

method inspired by a robotics algorithm. Although it is

generally true that loop regions are less accurately predicted,

some loops are intrinsically disordered or can adopt multiple

conformations. In this scenario, extensive conformational

resampling in order to find one energetically most stable

conformation may not be fruitful. Moreover, errors in

predicted models exist not only in loop regions but also in

regular secondary-structure regions.

One important step in improving the de novo model quality

for ab initio phasing could be to initially identify the less

accurately predicted regions in the model and then to perform

rigorous sampling on these regions. There have been extensive

efforts to develop methods that can assess the quality of
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computationally predicted models (Kryshtafovych & Fidelis,

2009). These model-quality assessment (MQA) methods have

been shown to be very useful in identifying good-quality

models and ranking them (Levitt & Gerstein, 1998; Zemla,

2003; Zhang & Skolnick, 2004b). Qian et al. (2007) used such a

strategy to improve the success rate of MR by rebuilding the

most conformationally variable regions within an ensemble of

structural models. After identifying regions of high confor-

mational variability using a principle similar to PCons

(Wallner & Elofsson, 2006), an aggressive sampling was

conducted on these regions and the cyclic coordinate-descent

method (Canutescu & Dunbrack, 2003) was used to maintain

the chain connectivity. The conformational variation has also

been exploited as a colony energy for loop prediction (Xiang

et al., 2002). When rebuilding was guided by the electron

density, the success rate of MR was further improved and

many challenging cases could be solved (DiMaio et al., 2011),

although an approximate MR solution was required in this

case.

Here, we describe a method for improving the quality of

de novo models. Firstly, local regions in the coarse-grained

models with large errors are identified. These errors are esti-

mated by the average pairwise geometric distance per residue

computed among selected lowest energy coarse-grained

models. Secondly, a rebuilding process that focuses on these

more error-prone residues in the coarse-grained models is

carried out. Lastly, these rebuilt coarse-grained models are

converted into all-atom models and refined with Rosetta all-

atom energy to produce improved de novo models for MR.

The score used here for error estimation is similar to many

MQA methods. However, instead of a global score for the

entire protein model, a per-residue score is calculated in order

to identify residues or regions where large errors exist. It was

observed in our previous study that computationally predicted

de novo models could be successfully used for phasing by MR.

However, half of the tested targets were not able to succeed in

MR trials, primarily owing to a lack of sufficiently accurate

input models (Shrestha et al., 2011). These difficult targets

were used as test cases for our method to produce improved de

novo models suitable for phasing by rebuilding local segments

that contain large errors. The results showed that the coarse-

grained models were refined closer to the native structures

and the success rate of phasing with these models after all-

atom refinement was significantly increased.

2. Methods

This method is designed to reduce the distance between the

coarse-grained models and the native structures. It calculates a

geometric distance score for each residue from selected lowest

energy coarse-grained models generated by Rosetta v.3.2. The

geometric distance score for each residue is computed by

superposing each model with all of the remaining selected

models and calculating a pairwise average root-mean-square

deviation on C� atoms (CA-RMSD), which is termed the

average pairwise residue distance score (AP-RDS),

AP-RDSði; jÞ ¼
1

n� 1

Pn�1

k¼1ðk6¼jÞ

½ðXij � XikÞ
2
þ ðYij � YikÞ

2

þ ðZij � ZikÞ
2
�
1=2: ð1Þ

where i represents the residue number, j represents the model

number, k represents all of the other models except model j, n

represents the total number of models and X, Y, Z represent

the Cartesian coordinates of each C� atom in a residue. The

r.m.s.d. from the native for all decoys was computed using the

Kabsch algorithm (Kabsch, 1976). Although many different

geometric distances, such as GDT (Zemla et al., 1999; Zemla,

2003), MaxSub (Siew et al., 2000), TM-score (Zhang & Skol-

nick, 2004b), Q-score (Ben-David et al., 2009) and percentile-

based spread (Pozharski, 2010) can be used, the r.m.s.d. was

chosen in this study for its simplicity and generality. This

AP-RDS score is computed in a similar way to that imple-

mented in PCons-local (Wallner & Elofsson, 2006), but the

score is used not only to identify residue errors but also to

estimate the sampling frequency for each residue during

rebuilding. The AP-RDS is used to guide conformation

sampling during rebuilding so that residues with higher scores

are sampled more often than those with lower scores. The

coarse-grained models after rebuilding are converted to all-

atom models using the fast relax algorithm implemented in

Rosetta v.3.2 (Tyka et al., 2011). All models after all-atom

refinement are tested against the diffraction data for their

suitability as templates for solution of the phase problem using

the Phaser program (McCoy et al., 2007). Our approach is

implemented in the C++ programming language and incor-

porates Rosetta and Phaser as libraries. It will be referred to as

MORPHEUS (MOdel Rebuilding for PHasing with Enhanced

sUcceSs). The number of successful MR solutions determines

the continuation or termination of the simulation. Maximum

and minimum thresholds for the Phaser score are used to

control the simulation as in our previous study (Shrestha et al.,

2011). Once a few good models have been obtained with

Phaser scores in the high confidence range, the entire simu-

lation is terminated. In the worst case, MR is run for all

generated de novo models.

2.1. Data set and coarse-grained model generation

A data set of ten targets that were unsuccessful in MR was

chosen from our previous benchmark (Shrestha et al., 2011).

Standalone Rosetta v.3.2 (Rohl et al., 2004; Tyka et al., 2011;

http://www.rosettacommons.org) was executed to generate

300 000 initial coarse-grained models for each target sequence

using the RIKEN Integrated Cluster of Clusters (RICC).

Fragment libraries for each of these targets were obtained

from the Robetta server (Chivian et al., 2003). In order to

mimic a blind prediction, fragments from the target structure

and structures with homologous sequences were excluded

from the fragment libraries.

2.2. Determine less accurately predicted regions

1000 lowest energy coarse-grained models were selected

from the pool of 300 000 models generated by Rosetta. Each
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model was superimposed with all other selected models using

rigid-body transformation with an optimal translation vector

and a rotation matrix that minimizes the sum of the squared

distances between two coordinate sets of corresponding atoms

(Kabsch, 1976). The AP-RDS was calculated by taking an

average of the CA-RMSDs between one model and all other

models for each residue position. The correlation between the

AP-RDS and the CA-RMSD from the native structure was

calculated and used to assess the capability of the AP-RDS

to estimate errors in each residue. Furthermore, each coarse-

grained model was assigned a score that was the average of the

CA-RMSDs between this model and other models covering

the entire sequence, which was defined as the average pairwise

model distance score (AP-MDS),

AP-MDSðjÞ ¼
1

n� 1

Pn�1

k¼1ðk6¼jÞ

�
1

m

Pm
i¼1

ðXij � XikÞ
2
þ ðYij � YikÞ

2

þ ðZij � ZikÞ
2

�1=2
;

ð2Þ

where j represents the model number other than model k, i

represents the residue number, m represents the total number

of residues in the model and n represents the number of

models. X, Y, Z represent the Cartesian coordinates of each

C� atom in a residue. The AP-MDS can be used to assess the

overall quality of coarse-grained models.

2.3. Rebuilding incorrectly predicted residues

A subset of coarse-grained models were selected from the

group of 1000 for further model rebuilding. This selection was

based on the AP-MDS score of each coarse-grained model.

While it is necessary to include a relatively large set of decoys

for the calculation of AP-RDS and AP-MDS scores, there is

no need to subject all of these models to further rebuilding.

Rebuilding only a subset of these models with the lowest

AP-MDS scores will enable the inclusion of the majority of

high-quality models, with a substantial saving of computa-

tional time. In this study, 65% of the models were chosen for

subsequent rebuilding. Owing to the long computing time

needed to complete the calculation for the entire test set of

targets, the choices of selecting the 1000 lowest energy models

for AP-RDS and AP-MDS calculation and the subsequent

selection of 65% models for rebuilding were not optimized.

Alternative choices cannot be exhaustively tested and

compared in order to come up with an optimum combination

of parameters. These parameters were empirically obtained by

testing on the first target and they seemed to work well.

Subsequently, they were used for all of the other targets.

During the rebuilding process, the conformation search

was biased towards error-prone residues according to the

AP-RDS. A total of 5000 rebuilding steps were used for each

coarse-grained model and these rebuilding steps were

distributed to each residue based on its AP-RDS. This non-

uniform sampling was achieved by the roulette-wheel proce-

dure (Supplementary Fig. S11). Instead of including both

three-residue and nine-residue fragments as the source for

rebuilding, only the three-residue fragment library was used

in order to reduce large changes in global conformations. For

each coarse-grained model selected, 300 rebuilding trajec-

tories were carried out with random seeds, which was sufficient

to explore the conformational space within a reasonable

computational time. The Rosetta coarse-grained scoring

function was used to evaluate the models generated during

each rebuilding trajectory. The temperature factor in the

Monte Carlo simulated-annealing procedure was modified to

make the acceptance rate of high-energy models proportional

to the residue error using the equation

Tcur ¼ Tmin þ
ðTmax � TminÞ

ðDmax �DminÞ
ðDcur �DminÞ: ð3Þ

In the above equation, Dmin and Dmax are the minimum and

maximum AP-RDS of the coarse-grained models. Tcur is the

current temperature given the value of Dcur (the AP-RDS of

the current residue). Tmin (minimum temperature) and Tmax

(maximum temperature) were set at 1.0 and 4.0, respectively.

Since the local variation (AP-RDS) is used to bias fragment

insertion in ab initio sampling, the conformation of the

downstream residues will be changed upon each new fragment

insertion. Regions with large errors will require a large

conformational change to correct them and this large

conformational change will be likely to cause an energy

increase, especially when it affects the downstream well

predicted residues, and consequently this change will be

rejected. This scenario is mitigated by setting the acceptance

threshold (Tcur) proportional to the structural variation (Dcur)

in order to increase the chance of large conformational

changes being accepted. Finally, the lowest energy model in

each rebuilding trajectory was chosen for side-chain packing

and all-atom refinement.

2.4. Side-chain packing and molecular replacement

Each lowest energy model from 300 independent rebuilding

trajectories was converted into an all-atom model using the

Rosetta all-atom conformation-sampling protocol. The Rosetta

fast relax algorithm (Tyka et al., 2011) was employed to pack

the side-chain rotamers and to perform all-atom refinement

through energy minimization. Phaser (McCoy et al., 2007) was

run for each refined all-atom model to assess its quality for

phasing. Phaser scores were used as a criterion to terminate

the entire rebuilding process after a few successful de novo

models for phasing had been obtained (Shrestha et al., 2011).

3. Results

3.1. The residue divergence score correlates with model
accuracy

The correlation between the coarse-grained energy of the

models and their accuracy is generally poor when all of the
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models generated are considered, since

those models cover a wide range of

distances from the native structure and

there is a high degree of degeneracy in

energy for less accurate models. This

can be seen from the energy landscape

in the form of a scatter plot of the

coarse-grained energies for all models

generated versus their CA-RMSDs

from the native structure (Fig. 1a).

Multiple local minima were observed in

the coarse-grained energy landscape for

all targets. The lowest energy models

were not always the nearest to the

native structure. For molecule 1opd the

best predicted models were �4.0 Å in

CA-RMSD from the native structure

and the lowest energy models were very

far away from the native structure.

However, the distribution of these

low-energy coarse-grained models may

contain information about their accu-

racy. Therefore, 1000 protein models

with the lowest coarse-grained energy

were selected. The AP-MDS for each of

these selected models was then calcu-

lated and their scatter plots versus CA-

RMSDs are shown in Fig. 1(b). The AP-

MDS of those lowest energy models for

sequences 2bc5, 3chy, 1ctf and 1bq9

showed significantly good correlation

with prediction accuracy. This AP-MDS

seems to be a useful measure for the

assessment and selection of de novo

models.

Our goal is to identify residues that

are predicted to have large errors.

Therefore, the AP-RDS was calculated

for each residue using the selected

lowest energy coarse-grained models.

The CA-RMSD of each residue from

the native structure showed a good

correlation with the AP-RDS (Fig. 2a).

The correlation between the AP-RDS

and the model accuracy of residues was

more than 0.5. Instead of determining

an absolute threshold to separate

correctly and incorrectly predicted

residues, all residues were subjected to

rebuilding with the sampling frequency

proportional to the estimated residue

error based on the AP-RDS. As can be

seen in Fig. 2(a), the AP-RDS was low

for more accurately predicted residues

and high for less accurately predicted

residues. Therefore, the AP-RDS of

each residue can provide an estimate of
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models are represented using red points. (b) Correlation between the AP-MDS and prediction
accuracy.



the accuracy of that residue in the

predicted model.

3.2. Improvement after rebuilding

The aim of the rebuilding procedure

is to optimize the coarse-grained models

in order to improve the accuracy of

all-atom models for successful phasing

by MR. The improved coarse-grained

models obtained using this rebuilding

procedure are only intermediates, since

all of the rebuilt models are subjected to

all-atom energy optimization. In order

to assess the potential improvement of

coarse-grained models after rebuilding,

the best rebuilt models after 300 inde-

pendent runs and their corresponding

input coarse-grained models were

analyzed. A scatter plot of the CA-

RMSDs for each model before and after

rebuilding is shown in Fig. 3. Rebuilt

models showed less geometric deviation

from the native structure compared with

the initial input models. The CA-RMSD

of coarse-grained models was improved

on average from 4.93 to 4.06 Å (Fig. 4a).

The improvements were not limited to

loops and termini; buried core regions

were also improved significantly. For

example, an �-helical region (residues

65–74) in the core of 3chy was improved

by 2.5 Å after rebuilding (Figs. 5a and

6). An �-helical region (residues 38–44)

in the core of 2bc5 was improved by

0.5 Å after rebuilding (Fig. 6). An

�-helical region (residues 29–33) in

1be7 was improved by 0.8 Å after

rebuilding (Figs. 5c and 6). However,

improvement cannot be measured in

the absence of the native structure.

The rebuilt models can only be

productive when their CA-RMSD is

below 3.0 Å from the native structure

because these are the models that may

become suitable templates for MR after

Rosetta all-atom optimization. There-

fore, the quality improvement for those

models with a CA-RMSD of <3.0 Å

after rebuilding was inspected. The

accuracy of these coarse-grained models

that are potential candidates for MR

was improved from a CA-RMSD of

3.38 Å to 2.60 Å on average (Fig. 4b).

The improvement in CA-RMSD for

each residue after rebuilding is shown in

Fig. 2(b) for four targets. One of the best
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Figure 2
The correlation between the AP-RDS and prediction accuracy for each residue and the model
improvement after rebuilding. (a) The correlation between the AP-RDS and the CA-RMSD of
each residue in selected models. (b) The improvement in the CA-RMSD for each residue in coarse-
grained models before and after rebuilding using MORPHEUS.



rebuilt models was selected for each target. A large portion of

the residues in these coarse-grained models were accurately

rebuilt (Fig. 2b). Furthermore, improvement was also

observed throughout the entire structure. The accuracy of the

N- and C-terminal residues was significantly improved as these

regions were sampled more frequently owing to their high AP-

RDS scores (Fig. 5). It was also observed that some residues

with higher AP-RDS were harder to optimize.

3.3. Ab initio phasing with de novo models

Of the ten data sets tested with de novo models that were

unsuccessful in our previous work, seven were successfully

phased using the current method. These were difficult targets

in the previous experiment since estimation of the input model

accuracy necessary for MR showed that more accurate models

were required (Shrestha et al., 2011). Using the current

method, the accuracy of the input models has been improved

for these data sets to enable successful phasing by MR. The

CA-RMSD of the rebuilt models to the native structures, the

phasing statistics and other relevant information are listed in

Table 1. There were seven targets for which models were

generated with less than 2.0 Å CA-RMSD from the native.

These models produced high TFZ scores after MR. To further

evaluate these Phaser solutions, an MR validation tool was

executed on the models with TFZ values of greater than 5.8,

although this procedure cannot be used in the absence of the

crystal structure (Shrestha et al., 2011). The CA-RMSD was

calculated using rigid-body transformation with an optimal

translation vector and a rotation matrix that minimized the

sum of the squared distances between two sets of coordinates

(Kabsch, 1976). It was also computed by applying crystallo-

graphic symmetry operators with all permissible origins of

the space group. For de novo models to be considered as

successful in MR, the difference between the CA-RMSDs

computed by these two methods has to be small, i.e.�1.0 Å. It

can be seen in column 8 of Table 1 that those models with

small differences (�1.0 Å) between the CA-RMSD (the first

number in column 8) and the SYM-RMSD (the third number

in column 8) were validated as successful in MR. This was

further confirmed by the low R factor and Rfree generated by

PHENIX AutoBuild using these MR models (column 9 in

Table 1).

The rebuilding procedure not only improved the overall

quality of models for targets that were unsuccessful for MR in

our previous work but also improved the quality of the models

that were successful for MR. When tested on two of the

previously successful targets, the CA-RMSD and all-atom

r.m.s.d. for 1ig5 were improved from

2.36 to 1.59 Å and from 3.13 to 2.49 Å,

respectively. Similarly, the CA-RMSD

and all-atom r.m.s.d. for 256b were

improved from 2.60 to 1.16 Å and from

2.90 to 1.82 Å, respectively (Table 1).

The successful MR models for these

seven targets were further refined using

automated model building in order to

assess the quality of these de novo

models and to further validate the MR

solutions. The model building and

refinement was carried out using the

AutoBuild protocol implemented in

PHENIX v.1.3 (Adams et al., 2002) with

default parameters. The electron-

density maps constructed using phases

from the de novo models successfully

led to complete three-dimensional

protein structures for the seven targets

with good R-factor and Rfree values.

These models that were successful in

MR were significantly improved after

automated refinement (Fig. 6).

There were three diffraction data sets

for which MR solutions could not be

found. This could be because the energy

landscape is far from ideal. It could also

arise from insufficient sampling. In the

case of 1opd, the energy landscape has

a minimum around 12 Å, resulting in a

weak anticorrelation between AP-MDS

and CA-RMSD among the selected
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Figure 3
Improvement of the coarse-grained models after rebuilding. A scatter plot of the CA-RMSDs
before and after rebuilding for all coarse-grained models is shown. A diagonal line is drawn on each
panel. Points below this line represent models with improved CA-RMSD.



low-energy models (Fig. 1). Even for the best rebuilt model,

the AP-RDS is distributed over a wide range and there was

little improvement (Supplementary Fig. S2). In our study, MR

for the ribosomal protein L7/L12 (PDB entry 1ctf) was not

successful using the rebuilt de novo models, although the

average CA-RMSD improvement of potential models for MR

after rebuilding was 0.45 Å. Rosetta all-atom energy mini-

mization did not yield models with sufficient accuracy to solve

the phase problem. The best rebuilt models for histidine-

containing proteins from Escherichia coli (PDB entries 1opd

and 1cm3) were also far away from the native structure, with

the largest improvement being from 12 to 8 Å (Supplementary

Fig. S3); they were almost impossible to use for phasing in our

study.

3.4. Accuracy and computation time

Our method was compared with other similar methods in

order to evaluate its success and failure as well as the

computation time required. The performance of our method

on the ten data sets was compared with those of Rosetta 100

CPU day, Rosetta large-scale CPU time (Das & Baker, 2009)

and RosettaX (Shrestha et al., 2011). The results of the

comparison are shown in Table 2 and Fig. 7. MORPHEUS

achieved seven successes out of ten tested cases, which were

all failed cases for RosettaX. Rosetta 100 CPU-day success-

fully generated the models required for phasing for two

targets. The number of successful cases was increased from

two to three using the increased computing power in Rosetta

large-scale CPU time.

Although MORPHEUS showed better results than the

previously published methods (Das & Baker, 2009; Shrestha

et al., 2011), this comparison might be unfair because of the

periodic improvements in Rosetta methods and differences

in fragment libraries arising from the increased pool of new

structures deposited in the PDB. In order to measure the

impact of our method on model rebuilding more objectively,

it was compared with Rosetta v.3.2 using the same fragment

library. 300 000 all-atom de novo models were generated using

Rosetta v.3.2 for all targets. 10 000 lowest energy all-atom

models were chosen for MR experiments in order to include

all near-native models. All of the best models generated by

Rosetta v.3.2 were included for MR, as can be seen in Table 3.
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Figure 4
Average improvement in coarse-grained models after rebuilding. The
black bar indicates the average CA-RMSD before rebuilding and the
grey bar shows the average CA-RMSD after rebuilding. (a) shows all
models and (b) shows those models with a CA-RMSD of less than 3.0 Å
from the native structure after rebuilding.

Figure 5
The improvement of coarse-grained models after rebuilding as a function
of residue position and their corresponding AP-RDS scores. The
CA-RMSD distributions of coarse-grained models before and after the
rebuilding process at each residue position are shown for 3chy (a), 1ctf
(b) and 1be7 (c). The AP-RDS scores are also shown for each residue for
these three proteins.



Rosetta v.3.2 produced better quality models for rubredoxin

(PDB entries 1bq9 and 1be7) than MORPHEUS, as is shown

in Table 3. These models easily succeeded in MR with higher

confidence in both cases. However, the selection of 1000

lowest energy coarse-grained models did not include all of

the best models for 1bq9 (Fig. 1). This led to MORPHEUS

generating less accurate models than Rosetta v.3.2. Aside from

these two data sets, the other eight data sets were unable to
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Table 2
Comparison of MR experiments using models generated by different methods.

Successful cases are indicated by 1; 0 represents failed cases.

Structure
factors Sequence

Space
group

No. of copies in
asymmetric unit

Sequence
length

Resolution
(Å)

Rosetta, 100
CPU days†

Rosetta,
large-scale† RosettaX

Rosetta
v.3.2 MORPHEUS

1be7 1bq9 H3 1 53 1.67 0 0 0 1 1
1bq9 1bq9 P212121 1 53 1.20 0 0 0 1 1
1ctf 1ctf P43212 1 68 1.70 0 0 0 0 0
1opd 1opd P1 1 85 1.50 0 0 0 0 0
1cm3 1opd P21 1 85 1.60 0 0 0 0 0
2bc5 2bc5 P212121 4 106 2.25 1 0 0 0 1
1ab6 3chy P31 2 128 2.20 0 1 0 0 1
2fka 3chy F432 1 128 2.00 1 1 0 0 1
3chy 3chy P212121 1 128 1.66 0 0 0 0 1
6chy 3chy P21212 2 128 2.33 0 1 0 0 1

† Das & Baker (2009).

Table 1
Summary of molecular-replacement and automated model-refinement results with rebuilt models.

Structure
factors Sequence

Space
group

No. of copies in
asymmetric unit

Sequence
length

Resolution
(Å) RFZ, TFZ†

CA-RMSD, r.m.s.d.,
SYM-RMSD‡ (Å) R, Rfree

1be7 1bq9 H3 1 53 1.67 4.4, 6.5 1.33, 1.63, 2.48 0.18, 0.20
1bq9 1bq9 P212121 1 53 1.20 3.8, 6.9 1.61, 2.28, 1.77 0.22, 0.22
1ctf 1ctf P43212 1 68 1.70 3.0, 6.1 2.67, 3.20, 27.82 —
1opd 1opd P1 1 85 1.50 4.9, 100.0 9.52, 10.03, 15.93 —
1cm3 1opd P21 1 85 1.60 4.6, 3.9 9.46, 10.05, 16.94 —
2bc5 2bc5 P212121 4 106 2.25 2.5, 9.3 1.26, 2.07, 1.47 0.26, 0.31
1ab6 3chy P31 2 128 2.20 4.4, 7.9 1.72, 2.25, 1.81 0.20, 0.26
2fka 3chy F432 1 128 2.00 3.6, 7.0 1.88, 2.60, 1.92 0.24, 0.25
3chy 3chy P212121 1 128 1.66 4.0, 8.3 1.80, 2.44, 1.93 0.18, 0.22
6chy 3chy P21212 2 128 2.33 4.0, 9.7 1.96, 2.45, 1.99 0.22, 0.28
1ig5§ 1ig5 P43212 1 75 1.50 3.7, 6.8 1.59, 2.49, 1.63 (2.36, 3.13, —) 0.21, 0.26
256b§ 256b P1 2 106 1.40 9.0, 8.6 1.16, 1.82, 1.18 (2.60, 2.90, —) 0.24, 0.26

† Results after Phaser run. RFZ and TFZ are the rotation-function Z-score and the translation-function Z-score, respectively. ‡ CA-RMSD, r.m.s.d. and SYM-RMSD are the root-
mean-square deviations from the native structure calculated using C� atoms, all atoms and all possible crystallographic symmetry operators and origins, respectively. A small difference
(�1 Å) between CA-RMSD and SYM-RMSD indicates successful MR. § Two targets that were successful in MR using models generated by RosettaX were subjected to rebuilding by
MORPHEUS. The models have been improved by rebuilding and the corresponding quality measures from RosettaX are shown in parentheses.

Table 3
Comparison of the best models generated and the models that produced the highest MR scores.

In the Rosetta v.3.2 run, 10 000 lowest all-atom energy models were selected.

Rosetta v.3.2 MORPHEUS

Structure
factors Sequence

Space
group

No. of copies
in asymmetric
unit

Sequence
length

Resolution
(Å)

RFZ,
TFZ

CA-RMSD,
r.m.s.d. (Å)

Rank by
CA-RMSD†

Lowest
CA-RMSD,
r.m.s.d. (Å)

RFZ,
TFZ

CA-RMSD,
r.m.s.d. (Å)

Lowest
CA-RMSD,
r.m.s.d. (Å)

1be7 1bq9 H3 1 53 1.67 4.8, 7.1 1.18, 1.70 1 1.18, 1.70 4.4, 6.5 1.33, 1.63 1.29, 2.01
1bq9 1bq9 P212121 1 53 1.20 4.4, 6.8 1.11, 1.41 1 1.11, 1.41 3.8, 6.9 1.61, 2.28 1.39, 2.09
1ctf 1ctf P43212 1 68 1.70 3.3, 3.7 2.46, 2.96 1 2.46, 2.96 3.0, 6.1 2.67, 3.20 2.31, 3.03
1opd 1opd P1 1 85 1.50 3.7, 100 3.09, 3.99 3 2.89, 3.85 4.9, 100 9.52, 10.03 8.33, 9.18
1cm3 1opd P21 1 85 1.60 3.8, 2.5 3.09, 3.97 3 2.96, 3.85 4.6, 3.9 9.46, 10.05 8.38, 9.13
2bc5 2bc5 P212121 4 106 2.25 — 1.11, 1.78 4 1.09, 1.86 2.5, 9.3 1.26, 2.07 1.04, 1.68
1ab6 3chy P31 2 128 2.20 — 2.30, 2.84 1 2.30, 2.84 4.4, 7.9 1.72, 2.25 1.72, 2.25
2fka 3chy F432 1 128 2.00 3.9, 4.1 2.44, 3.12 1 2.44, 3.12 3.6, 7.0 1.88, 2.60 1.85, 2.61
3chy 3chy P212121 1 128 1.66 4.2, 4.7 2.37, 3.05 1 2.37, 3.05 4.0, 8.3 1.80, 2.44 1.68, 2.28
6chy 3chy P21212 2 128 2.33 — 2.37, 2.93 1 2.37, 2.93 4.0, 9.7 1.96, 2.45 1.78, 2.27

† The rank of the best models from the simulation that are in the 10 000 selected models. This information is not given for MORPHEUS because the models are used for MR as they are
generated.



achieve successful MR with models generated using Rosetta

v.3.2. The best predicted de novo models could not pass the

MR test for cytochrome c-b562 (PDB entry 2bc5) using both

RosettaX and Rosetta v.3.2. For MORPHEUS, slightly less

accurate models yielded an MR solution for this target. The

reason for this might be that many highly accurate models

were examined with the diffraction data set during the simu-

lation. In addition, identical CA-RMSDs could arise from very

different structures. The success in MR of a structure with a

relatively large CA-RMSD from the native structure could

conceivably arise from the errors in the residues being

unevenly distributed. Most of the residues were probably

more accurately predicted and some residues with large errors

might have made the overall CA-RMSD relatively high. The

improved prediction accuracy for 1opd and 1cm3 after

MORPHEUS was not useful since the quality of the best input

model was about 9.0 Å in CA-RMSD.

Although both MORPHEUS and Rosetta v.3.2 are feasible

using currently available moderate computing resources,

another factor for comparison could be the total elapsed time

spent by these methods. The total elapsed time is the accu-

mulation of the time spent in coarse-grained model genera-

tion, energy minimization using all-atom models and MR.

In addition, the elapsed time for MORPHEUS also includes

the model-rebuilding time. Both methods used the same

computing resource. The average total elapsed time is about

equal for the methods, except for two targets (PDB entries

2bc5 and 1be7). The large differences in elapsed time for these

two proteins are primarily owing to MR. These are very likely

to be the worst-case scenario for MORPHEUS. At the other

extreme, MORPHEUS can obtain an MR solution with fewer

models generated compared with Rosetta v.3.2. Of the tested

cases, the total number of models generated for phasing varied

from 1.0 � 104 to 1.8 � 105. MORPHEUS also used less

elapsed time when an MR solution was found very early in the

simulation, such as for the targets 3chy and 6chy. In some

cases, the energy-based selection used in Rosetta v.3.2 might

have missed the best models for ab initio phasing although

suitable models had already been predicted; MORPHEUS

does not suffer from this drawback since all generated de novo

models are used for MR until successful solutions are found.

4. Discussion

4.1. Coarse-grained energy landscape and AP-RDS

The coarse-grained energy function is designed to enable

the sampling of a larger conformational space for simplified

protein models that contain only the main chain and the

centroids of side chains. The objective is to search and find
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Figure 6
Comparison of models before and after rebuilding with models after automated model building and refinement. Final models were built by the PHENIX
AutoBuild protocol using successful MR models. Models before rebuilding are coloured green, models after rebuilding used for MR are coloured cyan
and models after PHENIX Autobuild are coloured magenta. Core regions with significant improvement as mentioned in the text are highlighted by
circles with red dashed lines.



the global fold of a target protein by maximizing the burial of

hydrophobic side chains and the exposure of hydrophilic side

chains. However, missing side-chain atoms in the coarse-

grained models make the coarse-grained energy function less

accurate. The coarse-grained models generated can be from

conformations trapped in multiple minima in a complex

energy landscape. It is difficult to discriminate between

predicted models using only the coarse-grained energy func-

tion. Despite being less accurate than its all-atom counterpart,

the coarse-grained energy can be used to generate near-native

models (Das & Baker, 2008). It is generally assumed that in a

randomly sampled energy landscape there should be more

models generated that correspond to lower energy than

models whose conformations correspond to higher energy.

This principle has provided the foundation for the use of

clustering methods to identify native-like protein models

(Shortle et al., 1998; Zhang & Skolnick, 2004a; Berenger et al.,

2011). Our choice of the geometric similarity of low-energy

models is similar in principle to the clustering methods that

identify native-like models. The AP-MDS will be small if a

model has more neighbours because they sample a lower

energy level in the energy landscape. The same principle can

be used to reason that the AP-RDS will be small if a residue

has more neighbours in the generated models because it

corresponds to a lower energy conformation. This seems to be

the case for our data, as shown in Fig. 1. This concept has also

been employed to generate hybrid models with the best resi-

dues from selected templates in homology modelling (Wallner

& Elofsson, 2006). However, the correlation between the AP-

MDS or AP-RDS and model quality depends on the coarse-

grained energy landscape as it pertains to the protein target.

Although this holds true for most of the targets tested, this

correlation breaks down for 1opd (Fig. 1b) because the

sampled energy landscape has its minimum at about 12–14 Å

CA-RMSD from the native structure (Fig. 1a). Our model-

rebuilding procedure would fail in this case. As the CA-

RMSD is calculated by comparing the corresponding atoms

between the model and the native structure, it may appear to

be very large for the purpose of assessing the suitability of a

model for MR since it is the spatial matching of the scatterers

rather than the order with which the atoms are connected that

is important for MR. The CA-RMSD was used here to

measure the quality of a predicted model owing to the critical

dependence of the method that was used to generate the

model on the connection order of all of the atoms in a protein.

4.2. Conformational sampling with AP-RDS

The rebuilding procedure concentrates on the effective

sampling of potentially incorrect local segments in a coarse-

grained model guided by the AP-RDS. The purpose of this

sampling strategy is to increase the sampling rate of residues

with larger error. No specific threshold is used to discriminate

correctly and incorrectly predicted residues. The conformation

sampling is carried out at a relative rate proportional to the

AP-RDS.

Wrongly predicted segments are non-uniformly distributed

in the model. Terminal and loop segments are regions that

potentially have the largest structural diversity. The sampling

algorithm for loop segments was carried out by fixing two

anchor points in a protein without changing the entire

conformation (Canutescu & Dunbrack, 2003). The confor-

mational search using the AP-RDS score samples the entire

protein structure non-uniformly regardless of the secondary

structure. Our results suggest that non-uniform sampling

based on the AP-RDS may be an alternative strategy to

random sampling or sampling of loop regions only.

Model improvements were observed over the entire region

of a protein. The input models were significantly improved at

the C- and N-terminal segments, as residues in these segments

showed a higher AP-RDS. Regardless of secondary structure,

improvements of local segments on the exterior and in the

interior of the models were also observed. Despite showing a

higher AP-RDS, some local segments in the protein structure

were difficult to improve. Possible reasons are that the

conformations represented by the short three-residue frag-

ments might not be adequate to sample near-native regions

for these residues or that the coarse-grained energy might not

be accurate enough to guide the sampling.

4.3. Model rebuilding and molecular replacement

The accuracy of de novo models is a critical factor in

successful phasing by MR. In practice, loop regions and N- and

C-terminal segments are considered to be flexible and harder

to predict and these segments are trimmed off in template

models prior to the MR experiment. Instead of trimming off

these segments in the model, rebuilding these regions can be

an alternative strategy for successful MR.

Rebuilding residues with large errors can increase the

accuracy of de novo models. It is advantageous to rebuild

these residues at the coarse-grained model level. The coarse-

grained sampling method explores a large conformational

space more effectively. In principle, rebuilding can also be

performed on all-atom models. However, there is a much
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Figure 7
Elapsed computation time spent by MORPHEUS and Rosetta v.3.2
during simulation.



larger conformational space to be sampled and the current

search protocol is designed to avoid drastic changes to the

global conformation at the all-atom optimization stage.

The existence of higher order noncrystallographic symmetry

in the crystal sometimes tends to require more accurate input

models for success in MR. This is probably because the

successful location of each monomer in the asymmetric unit

depends on the solution for the previous monomer and the

errors tend to accumulate. For example, cytochrome c-b562

(PDB entry 2bc5) is an �-helical bundle and de novo model-

ling generated highly accurate models, but phasing with these

models was not successful mainly owing to the presence of

four copies of the molecule in the asymmetric unit. The

presence of larger loop segments in rubredoxin (PDB entry

1be7) may also increase the difficulty in phasing. The success

of de novo models for phasing depends not only on the

accuracy of backbone atoms but also that of side-chain atoms.

The improvement in the main chain alone is insufficient when

all-atom optimization cannot lead to the increased model

accuracy required for phasing, as in the ribosomal protein

L7/L12 (PDB entry 1ctf). The CA-RMSD of coarse-grained

models was reduced, but the subsequent all-atom models did

not appear to be sufficiently accurate for phasing. Therefore,

improvement in all-atom modelling is also important in

addition to rebuilding coarse-grained models.

Model quality has been shown to be an important deter-

minant for the success of MR. However, it has paradoxically

been observed that two models with very similar r.m.s.d.s to

the native structure could have opposite outcomes in MR, as

in the case of 2bc5 in Table 3. This might be owing to the use

of the r.m.s.d. as a single measure of the structural differences

between two models. The r.m.s.d. is degenerate and cannot

distinguish various scenarios of structural differences between

two models. The quadratic nature of the r.m.s.d. gives a higher

weight to the region that differs the most, whereas for MR the

matched regions between the template and target give rise to

signal while the mismatched regions generate noise. It is

conceivable that alternative measures such as GDT (Zemla et

al., 1999; Zemla, 2003), MaxSub (Siew et al., 2000), TM-score

(Zhang & Skolnick, 2004b), Q-score (Ben-David et al., 2009)

or percentile-based spread (Pozharski, 2010) might be used as

a better predictor of success in MR for a given model.

The conformational variation in an ensemble of predicted

models has previously been exploited not only for model-

quality assessment but also for model rebuilding. Although

conformational variation has been employed as a ‘colony

energy’, which is used as a post-filtering measure for loop

prediction (Xiang et al., 2002), it is used here as both a global

(AP-MDS) and a local (AP-RDS) measure not only for the

estimation of errors but also to guide the sampling and

rebuilding of the entire region in a model. The local structural

variation of models has been used to identify regions that are

most likely to be in error and to aggressively sample and refine

them to improve model quality (Qian et al., 2007). There are

several differences between our method and that of Qian and

coworkers. Firstly, MORPHEUS uses coarse-grained models

to estimate errors and rebuilds coarse-grained models before

subjecting them to all-atom refinement, whereas Qian and

coworkers use all-atom models to identify error-prone regions

and the rebuilding also uses all-atom models. Secondly,

MORPHEUS uses local variation to estimate errors and then

uses this variation to guide the sampling proportional to the

estimated errors. There is no threshold needed to identify a

particular region for rebuilding and the sampling is non-

uniform. In contrast, Qian and coworkers use local variation

to identify regions that are most likely to contain errors and

then aggressively sample these regions uniformly regardless

of the actual amount of variation within and among regions.

Thirdly, MORPHEUS rebuilds the entire model with sampling

proportional to the structural variation. There is no chain

break created during the rebuilding process. A modified

acceptance criterion proportional to the structural variation in

the form of a temperature factor is introduced to enable large

conformational changes that cause an increase in energy to be

accepted during the Monte Carlo sampling. Qian and cowor-

kers fix the C- and N-terminal ends adjacent to the region to

be rebuilt and then use the cyclic coordinate descent to close

the chain break.

5. Conclusions

This study explores the rebuilding of error-prone residues in a

coarse-grained model in order to generate more accurate all-

atom models that could be used as templates for phasing by

MR. To evaluate our method, a set of targets that were

unsuccessful in our previous study were tested. The CA-

RMSD of potential coarse-grained models for MR (less than

3.0 Å CA-RMSD from the native structure) was reduced from

3.4 Å to 2.6 Å on average. The large errors present in the N-

and C-terminal segments were more significantly reduced.

Since terminal segments are very difficult to predict accurately

in de novo modelling, the rebuilding methodology may be a

method for improving the accuracy of terminal segments.

Moreover, the local errors in the protein models were reduced

regardless of secondary structure. Model improvements are

found not only in the termini but also in the core regions.

Ab initio phasing with rebuilt coarse-grained models after

all-atom optimization increased the success rate of molecular

replacement. 70% of the tested cases succeeded in molecular

replacement, primarily owing to the improved model quality.

Moreover, the phases obtained after successful molecular

replacement were sufficient to generate high-quality electron-

density maps for automated model building and refinement.
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